Все приставки к мультиметру для измерения. Приставки к мультиметру схемы

Начало

Да, эта тема многократно обсуждалась, в том числе и здесь. Я собрал два варианта схемы Ludens и они очень хорошо себя зарекомендовали, тем не менее, у всех предлагаемых ранее вариантов есть недостатки. Шкалы приборов со стрелочными индикаторами очень нелинейны и требуют для калибровки много низкоомных резисторов, эти шкалы надо рисовать и вставлять в головки. Приборные головки велики и тяжелы, хрупки, а корпуса малогабаритных пластмассовых индикаторов обычно запаяны и они часто имеют мелкую шкалу. Слабым местом почти всех предыдущих конструкций является их низкая разрешающая способность. А для конденсаторов LowESR как раз надо измерять сотые доли Ома в диапазоне от нуля до половины Ома. Предлагались также приборы на основе микроконтроллеров с цифровой шкалой, но не всякий занимается микроконтроллерами и их прошивками, устройство получается неоправданно сложным и относительно дорогим. Поэтому в журнале «Радио» сделали разумную рациональную схему - цифровой тестер есть у любого радиолюбителя, да и стоит он копейки.

Я внес минимальные изменения. Корпус - от неисправного «электронного дросселя» для галогеновых ламп. Питание - батарея «Крона» 9 Вольт и стабилизатор 78L05 . Убрал переключатель - измерять LowESR в диапазоне до 200 Ом надо очень редко (если приспичит, использую параллельное подключение). Изменил некоторые детали. Микросхема 74HC132N , транзисторы 2N7000 (to92) и IRLML2502 (sot23). Из-за увеличения напряжения с 3 до 5 Вольт отпала необходимость подбора транзисторов.
При испытаниях устройство нормально работало при напряжении батареи свежей 9,6 В до полностью разряженной 6 В.

Кроме того, для удобства, использовал smd-резисторы. Все smd-элементы прекрасно паяются паяльником ЭПСН-25. Вместо последовательного соединения R6R7 я использовал параллельное соединение - так удобнее, на плате я предусмотрел подключение переменного резистора параллельно R6 для подстройки нуля, но оказалось, что «нуль» стабилен во всем диапазоне указанных мною напряжений.

Удивление вызвало то, что в конструкции «разработанной в журнале» перепутана полярность подключения VT1 - перепутаны сток и исток (поправьте, если я неправ). Знаю, что транзисторы будут работать и при таком включении, но для редакторов такие ошибки недопустимы.

Итого

Данный прибор работает у меня около месяца, его показания при измерениях конденсаторов с ESR в единицы Ом совпадают с прибором по схеме Ludens .
Он уже прошёл проверку в боевых условиях, когда у меня перестал включаться компьютер из-за емкостей в блоке питания, при этом не было явных следов «перегорания», а конденсаторы были не вздувшимися.

Точность показаний в диапазоне 0,01…0,1 Ом позволила отбраковать сомнительные и не выбрасывать старые выпаянные, но имеющие нормальную ёмкость и ESR конденсаторы. Прибор прост в изготовлении, детали доступны и дёшевы, толщина дорожек позволяет их рисовать даже спичкой.
На мой взгляд, схема очень удачна и заслуживает повторения.

Файлы

Печатная плата:
🕗 25/09/11 ⚖️ 14,22 Kb ⇣ 668 Здравствуй, читатель! Меня зовут Игорь, мне 45, я сибиряк и заядлый электронщик-любитель. Я придумал, создал и содержу этот замечательный сайт с 2006 года.
Уже более 10 лет наш журнал существует только на мои средства.

Хорош! Халява кончилась. Хочешь файлы и полезные статьи - помоги мне!

У каждого радиолюбителя в арсенале имеется простой и надежный измерительный прибор мультиметр, но иногда его возможностей не хватает. Тогда на помощь нам приходят самодельные схемы - приставки к мультиметру, которые помогут начинающему электронщику в его радиолюбительской практике

Конструкция самодельной приставки состоит из регулируемого повышающего преобразователя напряжения с питанием от 5 В блока питания или USB; Генератора прямоугольных импульсов DD1.1 с частотой следования 15 кГц; Дифференцирующей цепочки на СЗ и VT1 и инвертора на элементах DD1.2-DD1.4.

Прямоугольные импульсы с генератора DD1.1 через дифференцирующую цепочку проходят на входы DD1.2. Сильнее открывая VT1, можно «уменьшить» импульсы на его входах. Инвертируемые импульсы через резистор R3 подаются на базу транзистора VT2. То есть если на выходах инвертора единица, транзистор VT2 открыт и через дроссель L1 начинает течь ток, а энергия накапливается в его магнитном поле. При "нуле" транзистор VT2 закрыт и на L1 формируется импульс напряжения самоиндукции, который выпрямляется диодом VD1 и сглаживается конденсатором С5. Чем длиннее импульс, приходящий на VT2, тем выше уровень энергии накапливаемый в дросселе и тем выше напряжение с выхода выпрямителя.

В начальном состоянии скважность импульсов генератора около двух и напряжение на выходе выпрямителя максимальное. Оно поступает на VT1 через делитель на резисторах R2-R4, VT1 открывается и длительность импульса, идущего на базу VT2 становится меньше, как и напряжение на выходе выпрямителя. Таким образом осуществляется стабилизация напряжения на выходе выпрямителя в диапазоне 55-60 В. Регулировать выходное напряжение можно резистором R4.

Для проверки стабилитрона к приставке подсоединяют мультиметр на режиме постоянного тока. Проверяемый стабилитрон подсоединяют к гнёздам XS1, переключатель SA2 устанавливают в положение «Стаб.». Если стабилитрон рабочий и его напряжение стабилизации не превышает 50 В, ток проходящий через него возрастает и загорается светодиод HL1, транзистор VT1 откроется еще сильнее и напряжение на выходе выпрямителя станет меньше. В данном случае напряжение на стабилитроне будет соответствовать напряжению стабилизации, которое и измеряем мультметром. Так как мы знаем полярность, то легко понять назначение выводов стабилитрона. Если подсоединить стабилитрон в прямом включение, то VT1 откроется полностью, и прямоугольные импульсы перестанут поступать на DD1.2 и питание на выпрямитель поступает от 5 вольтового блока питания.

Для проверки динистора его подключают к разъему XS2, напряжение на который подается через RC-цепь R6-C7 или R7-C6. В исходном состояние SA1 переключают в режим «Пров.», a SA2 - в режим «Дин.». Если динистор работает нормально, он вместе с RC-цепью R6-C7 входит в состав релаксационного генератора с частотой следования импульсов несколько герц. Как только напряжение на конденсаторе С7 достигнет уровня открывания динистора. Он быстро разрядится через резистор R5 и светодиод HL1, который при этом кратковременно вспыхнет. Из-за того, что частота следования импульсов невелика конденсатор С4 не в состояние поддерживать постоянное напряжение на базе VT1, поэтому напряжение на выпрямителе нестабильно. Этот режим хорошо подходит для проверки работоспособности динистора, но если уровень открывания динистора больше 55 В, релаксационный генератор уже не работает.

Чтобы замерить уровень открывания динистора, разъем XS2 переключают к цепи R7-C6. При этом частота следования импульсов в релаксационном генераторе возрастает как минимум в несколько раз, и конденсатор С4 спокойно поддерживает требуемое напряжение на транзисторе VT1. И он остается открытым, поэтому выходное напряжение выпрямителя соответствует напряжению открывания динистора. Именно его мы и можем померить нашим мультиметром.


Используемые радиодетали показаны на схеме, в случае их отсутствия используйте радиолюбительские справочники для их замены. Светодиод желательно использовать сверхяркий. Дроссель типа RLB0608, можно использовать и самодельный.

Конструкция печатной платы приведена на рисунке ниже, для ее самостоятельного изготовления рекомендую использовать

Смотри также альтернативный вариант приставки к мультиметру для

В современных схемах роль конденсаторов заметно возросла, т.к увеличились и мощности и частоты работы устройств. И поэтому очень важно проверять ESR у всех конденсаторов перед сборкой схемы или во время диагностирования неисправности.

Equivalent Series Resistance - эквивалентное последовательное сопротивление это сумма последовательно соединенных омических сопротивлений контактов выводов и электролита с обкладками электролитического конденсатора.

Принцип работы приставки к мультиметру заключается в следующем. Напряжение треугольной формы подается на измеряемую емкость, при этом ток идущий через нее имеет форму меандра, а его амплитуда пропорциональна измеряемой емкости. В случае измерения индуктивности через нее пропускается ток треугольной формы, падение напряжения на индуктивности имеет форму меандра и пропорционально ее величине. Подробней смотри в журнале схемотехника март 2003 года.

В радиолюбительской практике иногда требуется измерить малые сопротивления значение которых ниже 1 Ом, например, в случае проверки обмоток трансформаторов на короткое замыкание, контактов реле, различных шунтов,. Как же осуществить измерение малых сопротивлений величиной в милиомы или микроомы? Как известно из курса электротехники, измерение сопротивлений основано на эффекте преобразовании их величины в ток или напряжение.

Эта схема приставки позволяет превратить обычный мультиметр в простой дозиметр, который очен удобен в бытовой эксплуатации и эффективен

Как и в большинстве конструкций основным элементом в этой приставке к мультиметру является счетчик Гейгера СБМ-20, да и любой лругой можно приспособить. В качестве индикатора используется мультиметр DT9208A или с аналогичной функцией измерения частоты.

Так как напряжение счетчика Гейгера более 400 вольт, требуется повышающий преобразователь . Он выполнен по типу блокинг-генератора на радиокомпонентах VT1, Т1, С1, С2 и R1. С повышающей обмотки трансформатора Т1 импульсное напряжение следует на выпрямитель, на диодах VD1, VD2 и емкость СЗ. Преобразователь повышает напряжение до уровня 420. ..460 В. Катод датчика СБМ-20 подсоединен через цепь, сформированную параллельным подключением мультиметра и конденсатора С4.

При прохождении радиоактивной через датчик, внутри его осуществляется ионизация газа и на выходе генерируется электрический импульс.

Изготавливается на броневом сердечнике типа Б22, феррит 2000НМ. III обмотка состоит из 700 витков, провода ПЭВ-2 диаметром 0,1 мм. В процессе намотки через каждые 100 витков прокладываем слой трансформаторной бумаги или анологичную изоляцию. После намотки обмотку опять изолируем. Поверх нее наматывают еще две обмотки I и II двойным сложенным проводом по 14 витков, проводом ПЭВ-2 диаметром 0,2 и 0,4 мм. Средней точкой будет начало обмотки I и конец II.

При работе с любыми электроприборами или токопроводящими деталями, наличие измерительной аппаратуры является необходимым, будь то амперметр, вольтметр или омметр. Но для того чтобы не покупать все эти устройства, лучше обзавестись мультиметром.

Мультиметр является универсальным измерительным аппаратом, который позволяет измерить любую характеристику электричества. Мультиметры бывают аналоговые и цифровые.

Аналоговый мультиметр

Данный тип мультеметров отображает показания измерений при помощи стрелки, под которой установлено табло с различными шкалами значений. Каждая шкала отображает показания того или иного измерения, которые подписаны непосредственно на табло. Но для новичков такой мультиметр будет не самым лучшим выбором, поскольку разобраться во всех обозначениях, которые находятся на табло довольно трудно. Это может привести к не правильному пониманию результатов измерения.

Цифровой мультиметр

В отличие от аналоговых, этот мультиметр позволяет с легкостью определять интересуемые величины, при этом его точность измерений гораздо выше по сравнению со стрелочными аппаратами. Также наличие переключателя между различными характеристиками электричества исключает возможность перепутать то или иное значение, поскольку пользователю не нужно разбираться в градации шкалы показаний. Результаты измерений отображаются на дисплее (в более ранних моделях – светодиодных, а в современных – жидкокристаллических). За счет этого цифровой мультиметр комфортен для профессионалов и прост и понятен в использовании для новичков.

Измеритель индуктивности для мультиметра

Несмотря на то, что определять индуктивность при работе с электроникой приходится редко, это все же иногда необходимо, а мультиметры с измерением индуктивности найти достаточно трудно. В данной ситуации поможет специальная приставка к мультиметру, позволяющая измерить индуктивность.

Зачастую для подобной приставки используется цифровой мультиметр установленный на измерение напряжения с порогом точности измерения в 200 мВ, который можно приобрести в любом магазине электро и радиоаппаратуры в готовом виде. Это позволит сделать простую приставку к цифровому мультиметру.

Сборка платы приставки.

Собрать приставку-тестер к мультиметру для измерения индуктивности можно без особых проблем в домашних условиях, обладая базовыми знаниями и навыками в области радиотехники и пайки микросхем.

В схеме платы можно применять транзисторы КТ361Б, КТ361Г и КТ3701 с любыми буквенными маркерами, но для получения более точных измерений лучше использовать транзисторы с маркировкой КТ362Б и КТ363. Эти транзисторы устанавливаются на плате в позициях VT1 и VT2. На позиции VT3 необходимо установить кремневый транзистор со структурой p-n-p, например, КТ209В с любой буквенной маркировкой. Позиции VT4 и VT5 предназначены для буферных усилителей. Подойдет большинство высокочастотных транзисторов, с параметрами h21Э для одного не меньше 150, а для другого более 50.

Для позиций VD и VD2 подойдут любые высокочастотные кремневые диоды.

Резистор можно выбрать МЛТ 0,125 или аналогичный ему. Конденсатор С1 берется с номинальной емкостью 25330 пФ, поскольку он отвечает за точность измерений и ее значение стоит подбирать с отклонением не более 1%. Такой конденсатор можно сделать объединив термостабильные конденсаторы разной емкости (например, 2 на 10000 пФ, 1 на 5100 пФ и 1 на 220 пФ). Для остальных позиций подойдут любые малогабаритные электролитические и керамические конденсаторы с допустимым разбросом в 1,5-2 раза.

Контактные провода к плате (позиция Х1) можно припаять или подключать при помощи пружинящих зажимов для «акустических» проводов. Разъем Х3 предназначен для подключения приставки к .

Проводу к «бананам» и «крокодилам» лучше взять короче, что бы уменьшить влияние их собственной индуктивности на показания замеров. В месте припаивания проводов к плате, соединение стоит дополнительно зафиксировать каплей термоклея.

При необходимости регулирования диапазона измерений на плату можно добавить разъем для переключателя (например, на три диапазона).

Корпус приставки к мультиметру

Корпус можно сделать из уже готового короба подходящего размера или сделать короб самостоятельно. Материал можно выбрать любой, например, пластик или тонкий стеклотекстолит. Короб делается под размер платы, и в нем подготавливаются отверстия для ее крепления. Также делаются отверстия для подключения проводки. Все фиксируется небольшими шурупами.

Питание приставки осуществляется от сети при помощи блока питания с напряжением в 12 В.

Настройка измерителя индуктивности

Для того чтобы откалибровать приставку для измерения индуктивности понадобятся несколько индукционных катушек с известной индуктивность (например, 100 мкГн и 15 мкГн). Катушки по очереди подключаются к приставке и, в зависимости от индуктивности, движком подстроечного резистора на экране мультиметра выставляется значение 100,0 для катушки на 100 мкГн и 15 для катушки на 15 мкГн с точностью 5%. По такому же методу устройство настраивается и в других диапазонах. Важным фактором является то, что для точной калибровки приставки необходимы точные значение тестовых катушек индуктивности.

Альтернативным методом определения индуктивности является программа LIMP. Но этот способ требует некоторой подготовки и понимания работы программы.
Но как в первом, так и во втором случае точность подобных измерений индуктивности будет не очень высока. Для работы с высокоточным оборудованием данный измеритель индуктивности подходит плохо, а для домашних нужд или для радиолюбителей будет отличным помощником.

Проведение замеров индуктивности

После сборки приставку к мультиметру необходимо протестировать. Есть несколько способов, как проверить устройство:

  1. Определение индуктивности измерительной приставки. Для этого необходимо замкнуть два провода, предназначенных для подключения к индуктивной катушке. Например, при длине каждого провода и перемычки 3 см образуется один виток индукционной катушки. Этот виток обладает индуктивностью 0,1 – 0,2 мкГн. При определении индуктивности свыше 5 мкГн данная погрешность не учитывается в расчетах. В диапазоне 0,5 – 5 мкГн при измерении необходимо брать в расчет индуктивность устройства. Показания менее 0,5 мкГн являются примерными.
  2. Измерение неизвестной величины индуктивности. Зная частоту катушки, при помощи упрощенной формулы расчета индуктивности можно определить это значение.
  3. В случае, когда порог срабатывания кремниевых p-n переходов выше амплитуды измеряемой электрической цепи (от 70 до 80 мВ), можно измерить индуктивность катушек непосредственно в самой схеме (предварительно обесточив ее). Поскольку собственная емкость приставки имеет большое значение (25330 пФ), погрешность подобных измерений будет составлять не более 5% при условии, что емкость измеряемой цепи не превышает 1200 пФ.

При подключении приставки непосредственно к катушкам расположенным на плате применяется проводка длиной 30 сантиметров с зажимами для фиксации или щупами. Провода скручиваются с расчетом один виток на сантиметр длины. В таком случае образуется индуктивность приставки в диапазоне 0,5 – 0,6 мкГн, которую также необходимо учитывать при измерениях индуктивности.

В повседневной практике радиолюбителя пожалуй ни одна из измеряемых электрических величин не бывает часто столь малой и не требует такого точного её измерения как сопротивление. Наименьший предел измерения сопротивления, имеющийся в большинстве цифровых мультиметров, составляет 200 ом. Отсюда естественным образом следует, что точное измерение сопротивлений с меньшими значениями практически невозможно. В качестве примера можно назвать измерение сопротивления обмоток трансформатора или подбор шунта для измерительной головоки. Выходом в создавшейся ситуации будет к уже имеющемуся мультиметру.

Выбор пал на радиоконструктор (повторяемость схем в набор высокая + готовая печатная плата + стоимость деталей вполовину меньше чем в рознице) и на его основе была собрана вот такая приставка. Корпусом послужила подходящая коробочка из пластмассы.

Работа схемы приставки миллиомметра основана на определении падения напряжения на предмете измерения, при протекании через него фиксированного тока. Ток формируется генератором на транзисторе. Работой транзистора управляет усилитель на микросхеме TL062, которая питается стабилизированным напряжением от микросхемы 78L05. Предел измерений изменяется при помощи переключателя SA1. Диод, подключённый параллельно объекту измерения предохраняет мультиметр при включении приставки без измеряемого компонента. Особо следует заметить, что кнопка SB1 включается только исключительно на время проведения измерений. От себя добавил в схему светодиод с ограничивающим резистором номиналом 1,2 кОм для индикации включения («оживил» конструкцию).

Печатная плата довольно компактная, но можно сделать её ещё меньше, особенно применив смд компоненты.

А на существующую плату дополнительно свободно поместились:

  • разъём подключения питания
  • радиаторы на транзистор и стабилизатор
  • основание под кнопку включения приставки

На нижней части корпуса были смонтированы штыри соединяющие приставку с гнёздами мультиметра.

Конструкция помещённая в корпус, имеет совсем уже другой вид...

Для настройки приставка присоединяется к гнёздам мультиметра «mA» и «СОМ», предел измерения ставиться на 200 mA постоянного тока, подводится питание (9 вольт) к разъёму, переключатель в положении «отжат» (измерение до 2 Ом) нажимается кнопка включения и отвёрткой, через отверстие в верхней части корпуса, устанавливается, регулировкой резистора R7, ток 100mA.

Затем переключатель переводиться в положение «нажат» (измерение до 20 Ом) и устанавливается, регулировкой резистора R4, ток 10mA.

Для производства измерений приставка присоединяется уже к гнёздам «СОМ» и «V», предел измерения ставиться 200 mV постоянного напряжения. На фото на пределе измерения приставки «до 2 Ом» 1% резистор сопротивлением 0,33 Ом.

А это 1% резистор сопротивлением 1 Ом на пределе «до 20 Ом». Точность измерения приставкой очень даже достаточная, что позволяет решать все вопросы по измерению малых сопротивлений возникающих в процессе занятий электроникой. Скачать архив с описанием можно

В настоящее время практически все радиолюбители имеют в своем распоряжении какие-нибудь мульти- метры. Чаще всего, это недорогие китайские приборы "серии 830". В частности, у меня давно и успешно эксплуатируется тестер "DT -830B ". Этот прибор по многим параметрам хорош для радиолюбительской практики, но не предназначен для измерения индуктивности. Не так уж часто, но такая потребность воз­никает. Именно поэтому вызвала интерес читателей статья по его доработке.

Получив журнал, стал разби­раться со схемой и я. В процессе анализа возникли замечания. Мик­росхема DA 1 типа МС34063 дав­но распространена за рубежом. Ее можно купить и на отечественных радиорынках по вполне приемле­мой цене, но, как мне кажется, ее применение приводит к неоправ­данному усложнению схемы при­ставки для измерения индуктивно­сти. Вполне достаточно восполь­зоваться более распространенной в радиолюбительской практике микросхемой интегрального ста­ билизатора напряжения, напри­мер, 78L 05. Тогда отпадет необхо­димость применения дефицитного низкоомного резистора на 0,33 Ом (R 1), диода Шоттки (VD 1 1N 5819) и малогабаритных дросселей (L 1, L 2).

Триггер Шмитта DD1.1 использо­ван в схеме генератора импульсов. Элемент DD1 .2 этой же микросхе­мы предназначен для согласования генератора и его нагрузки (R5, Lx). В статье предлагалось подавать на­пряжение с измеряемой индуктив­ности Lx на вход мультиметра "М830В" через развязывающие кас­кады на элементах DD1.3 и DD1.4, включенные последовательно. Учи­тывая, что входное сопротивление использованного мультиметра "М830" и аналогичных не менее 1 МОм, более целесообразно изменить схе­му (рис.1).

Теперь сигнал с измеряемой ин­дуктивности Lx подается на милли­вольтметр РА1 через однополупериодный выпрямитель на VD 1. Посто­янное напряжение на R4 и С2 зави­сит от напряжения на Lx. Для умень­шения влияния напряжения пита­ния микросхемы DD1 на точность измерений в схеме применен интегральный стабилизатор напряжения DA1 типа 78L05. В крайнем случае, вполне до­пустимо вообще ограничиться параметрическим стабилиза­тором напряжения, например, стабилитроном КС156А. Эле­менты DD1 .2.. .DD1 .4 включе­ны параллельно для умощнения выхода генератора DD1 .1 перед подачей сигнала с него на низкоомную нагрузку (R2, Lx).

Резисторы R3 и R4 образуют де­литель напряжения. Подбором со­противления R3 можно добиться того, что показания милливольтмет­ра РА1 численно будут соответство­вать величине индуктивности Lx в микрогенри. К сожалению, данная схема за счет нелинейности вольт - амперной характеристики полупро­водникового диода VD1 обуславли­вает довольно значительную по­грешность измерения индуктивнос­ти. Изменением номинала R3 при настройке калибруют устройство в одной точке (при конкретном значе­нии Lx). В качестве контрольных можно использовать промышлен­ные дроссели ДМ (ДПМ) с 5% до­пуском.

Доработанная приставка собра­на на печатной плате, чертеж ко­торой и расположение радиоком­понентов приведены на рис.2, а на рис.3 - внешний вид изготовлен­ной платы.

При экспериментах выявилась интересная особенность схемы. При макетировании диод VD1 ошибочно был запаян в печатную пла+у "наоборот" (в про­тивоположной указан­ной на рис.1 полярнос­ти), а схема работала! Впоследствии поляр­ность диода была изме­нена, и при этом схема тоже работала! При­шлось решать: - "А как надо?". Оказалось, что на измеритель надо подавать отри­цательные полуволны переменного напряжения, возникающие на изме­ряемой индуктивности Lx при ее ударном возбуждении положитель­ными импульсами с генератора. Только при таком включении диода VD 1 показания милливольтметра РА1 будут равны нулю, если к при­бору не подключена измеряемая индуктивность.



error: Контент защищен !!