Оптопара описание работы. Транзисторные оптопары

Оптрон — это функциональное устройство, которое состоит из фотоизлучателя, фотоприемника и световода и осуществляет при работе преобразования оптических сигналов в электрические, а электрических в оптические.

Назначения. В электрической схеме оптрон выполняет функцию элемента связи, в одном из звеньев которого информация передается оптически. Это основное назначения оптрона. Если между элементами оптрона обеспечить обратную связь, то оптрон становится оптическим прибором, пригодным для усиления и генерирования электрических и оптических сигналов.

Класификация. Оптроны чаще всего классифицируют по виду оптической связи. Различают оптроны с внутренней и внешней оптической связью. Оптроны с внутренней оптической связью еще разделяют по виду внутренней связи. Различают оптроны с внутренной прямой оптической связью и оптроны с внутренной обратной оптической связью. Еще их классифицируют по виду обратной связи. Бывают оптроны с внутренной положительной обратным оптической связью и оптроны с внутренной отрицательной обратной оптической связью. Как будет показано ниже, основным элементом, который определяет функциональные возможности оптрона, является фотоприемник. Поэтому оптроны еще классифицируют по виду фотоприемников. Различают резисторные, диодные, транзисторные, тиристорные и комбинированные оптроны.

Рис. 1. Условные изображения оптронов: а — транзисторный; б — диодный; в — резисторный; г — с составным транзистором; д — тиристорный; е — дифференциальный; ж- диодно-транзисторный

Условные изображения и обозначения. Условные изображения оптронов на схемах приведены на рис. 1. Условные обозначения оптронов в текстах объединяют семь символов, обозначающих
материал, класс и подкласс устройства, частотный диапазон работы, порядковый номер разработки, разделение на параметрические группы. Например, обозначение АОД130А означает: арсенидгалиевый оптрон диодный, частотный диапазон работы 1, порядковый номер разработки 30, параметрическая группа А.

Рис. 2. Основные элементы оптронов с внутренним (а) и внешним (б) оптическими связями

Строение. Оптрон с внутренной оптической связью представляет собой четырехполюсник (рис. 2, а), который состоит из трех основных элементов: фотоизлучателя (источники света) 1, световода 2 и приемника света (фотоприемника) 3, помещенных в общий герметичный светонепроницаемый корпус. Оптрон с внешней оптической связью представляет собой двухполюсник, который имеет один оптический вход и один оптический выход (рис. 2, б). Он состоит из фотоприемника 3, усилителя 4, фотоизлучателя 1 и не имеет световода. В современных оптронах как фотоизлучатели преимущественно используют инжекционные диоды (светодиоды), реже — люминесцентные конденсаторы, а как фотоприемники-фоторезисторы, фотодиоды, фототранзисторы, фототиристоры. Для достижения высоких
значений параметров недостаточно использовать высокоэффективные фотоизлучатели и фотоприемники. Необходимо обеспечить их согласование по спектральным характеристикам, быстродействием,
габаритами, температурными характеристиками. Согласованными опттронными парами есть элементы, приведенные в табл. 3.4. Световод оптрона (оптическая среда) имеет тройное назначение: свести к минимуму потери при передаче энергии от фотоизлучателя к фотоприемнику, обеспечить высокие значения параметров гальванической развязки, создать конструктивно целостный прибор. Как оптическая среда преимущественно используют полимерные оптические клеи и лаки, которые имеют высокую адгезию до полупроводниковых кристаллов, добрые диэлектрические свойства, высокую эластичность, низкую стоимость. Одновременно они имеют существенные недостатки: коэффициенты преломления этих материалов (n ≈ 1,5) существенно отличаются от коэффициентов преломления кремния и арсенида галлия (n ≈ 3,2-3,4) спектральные характеристики полимеров имеют в ближней ИК-области много провалов, обусловленных резонансным поглощением групп ОН, СH 3 , СH 2 , NН, что при значительных размерах световода может влиять на светоотдачу; для полимерных световодов характерно старение.

Таблица 3.4. Согласованные пары «фотоизлучатель-фотоприемник»

Если жесткость оптрона обеспечивается элементами конструкции, то как оптическая среда могут использовать вазелиноподобные силиконовые смазки, которые не засыхают. Перспективными с точки зрения улучшения оптической связи между фотоизлучателем и фотоприемником, является халькогенидное стекло (n ≈ 1,8..3,0). Его недостатком является низкая адгезия к полупроводникам, высокая хрупкость, плохие изолирующие свойства (p = 10 9 … 10 11 Ом см), низкая устойчивость к термоциклов. Реальные конструкции оптронов (рис.3) призваны не только обеспечить предельно высокие значения определяющих параметров, но и расширить функциональные возможности этих приборов.

Робота. Работу оптрона с внутренной прямой оптической связью можно проиллюстрировать с помощью его электрической схемы (рис. 4, а), с которой видно, что входной и выходной сигналы оптрона являются электрическими. Между его элементами отсутствует электрический, но имеющийся оптическая связь. При подаче на вход оптрона электрического сигнала возбуждается фотоизлучитель, световой поток которого по световоду попадает в фотоприемник. На его выходе формируется электрический сигнал, который свидетельствует о том, что в оптроне состоялось преобразования по схеме электрический сигнал — оптический — электрический.

Рис. 3. Разновидности оптронов: оптрон в DIP-корпусе (а), высоковольтный (б), энергетический (в), оптрон с пластмассовой полусферой (г), оптоперыватель (д), отражающий оптрон (е): 1 -фотоизлучатель; 2 — фотоприемник; 3 — световод; 4 — корпус; 5 — внешние выводы; Ме — металлические электроды

Рис. 4. Электрическая схема (а) и передаточная характеристика (б) оптрона с внутренной прямой оптической связью

В оптроне с внутренним обратной положительной связью фотоприемник и источник света соединены последовательно (рис. 5, а). В нем два входа (оптический и электрический) и два аналогичных выхода.

Рис. 5. Электрическая схема (а) и вольт-амперная характеристика (б) оптрона с внутренной обратной положительной оптической связью

Между его элементами являются электрическая связь. Конструктивно оптрон выполнен так, что часть исходного светового потока попадает обратно в фотоприемник. Это приводит к уменьшению сопротивления, увеличение яркости свечение, дальнейшего уменьшения сопротивления. Этот процесс имеет нарастающий характер и продолжается до тех пор, пока изменение сопротивления не будет существенно влиять на величину тока или напряжения, которые подводятся к источнику света. Для этого достаточно, чтобы выполнялось условие:

когда,

где, и — минимальное сопротивление фотодиода и сопротивление источника света; и — входной и входной максимальный токи оптрона; и — исходная и
выходная максимальная яркость свечения.
На практике такой режим работы оптрона называется состоянием «Включен». Состоянию «выключено» соответствует условие:

Переход оптрона из состояния «выключено» в положение «вкл» происходит скачком и сопровождается лавинообразным изменением тока и яркости в электрическом и оптическом кругах.
В оптроне с внутренной обратной отрицательной оптической связью фотоприемник и источник света соединены параллельно (рис. 6, а). Он тоже имеет два входа (электрический и оптический) и два аналогичных выхода. Между его элементами тоже есть электрическая связь. Конструктивно оптрон выполнено так, что часть исходного светового потока падает обратно в фотоприемник. Это приводит к уменьшению сопротивления фотоприемника и все большего шунтирование ним источники света, в результате этого начинает слабее светить.

В оптроне с внешной оптической связью входной и выходной сигналы являются оптическими. Его элементы соединены между собой электрической связью.

Рис. 7. Электрическая схема (а) и передаточная характеристика (б) оптрона с внешной оптической связью

При подаче на вход оптрона оптического сигнала уменьшается сопротивление фотоприемника, вследствие чего возрастает ток через фотоизлучатель и соответственно растет яркость его свечения.

Свойства. Свойства оптронов определяют их характеристики и параметры. Различают входящие, исходящие, вольт-амперные и передаточные характеристики, их вид в значительной степени определяется электрической схеме оптрона и характером имеющихся оптических связей. Для оптронов с внутренной прямой оптической связью информативным является передаточная характеристика, выражающая
зависимость выходного электрического сигнала от входного. Для них любое изменение тока или напряжения фотоизлучения сопровождается соответствующими изменениями яркости его свечения, сопротивления фотоприемника и выходного тока оптрона. Поэтому его передаточная характеристика, выражающая зависимость выходного тока от входного, имеет вид, изображенный на рис. 4, б. Видно, что оптрон с внутренной прямой оптической связью можно рассматривать как элемент переменного сопротивления, величина которого определяется входным током или входным напряжением. Для оптронов с внутренной обратной положительной оптической связью основной является входная вольт-амперная характеристика, ее специфическая особенность заключается в наличии участка с отрицательным дифференциальным сопротивлением, на которой напряжение падает, а ток возрастает. По внешнему виду она напоминает вольт амперные характеристики, электромагнитного реле или триггера (рис. 5, б).
Для оптронов с внутренной обратной отрицательной оптической связью основной тоже есть входная вольт-амперная характеристика. Ее вид приведен на рис. 6, б. Анализ формы кривой показывает, что при одинаковом спектральном составе входного и выходного излучений наблюдается монохроматическое усиления светового потока. Если же спектральный состав входного и выходного излучений разный, то наблюдается преобразования излучения. Оптрон с внешной оптической связью играет роль усилителя оптических сигналов (рис. 7).

Система параметров оптронов содержит параметры четырех групп:
1. Параметры, описывающие входную характеристику оптронов.
2. Параметры, которые описывают исходную характеристику оптронов.
3. Параметры, описывающие передающую характеристику оптронов.
4. Параметры, описывающие гальваническую развязку оптронов.

Поскольку на входе оптронов являются светодиоды или электролюминесцентные конденсаторы, а на выходе — фотодиоды, фототранзисторы, фоторезисторы, фототиристоры, то специфическим для оптронов есть только параметры двух последних групп. Степень влияния фотоизлучателя на фотоприемник (передающая характеристика) определяется:
— коэффициентом передачи тока применяемый для диодных и транзисторных оптронов;

— отношением темнового сопротивления к световому: или величиной светового сопротивления , которые применяют для резисторных оптронов;
— минимальным входным током, который обеспечивает выпрямлены входные характеристики , что применяют для тиристорных оптронов.

К ним относятся и параметры, характеризующие инерционность оптрона в импульсном режиме (время включения и выключения и ) и в высокочастотном (предельная частота ). Качество гальванической развязки в статике и динамике определяется заданием напряжения и сопротивления гальванической развязки (связи) и и проходной емкости (емкости связи).
Транзисторные оптроны характеризуются наибольшей схемотехнической гибкостью, имеют высокое значение коэффициента передачи тока, но по сравнению небольшое быстродействие (). Особенно большие значения , (до 600 … 800%) достигают в оптроне с составным транзистором. Диодные оптроны, производящих преимущественно с использованием р- и n -фотоприемников, отмечаются большим быстродействием , но значение для них составляет единицы процентов, поэтому необходимо усиление видеоизображений.
Диодные интегрированные оптроны, которые изготавливают по планарной технологии с применением GaAs -свитлодиодив и Si — p — i — n -фотодиодов, разделенных иммерсионной средой из стекла (n = 2,7), подобно диодных неинтегрированных оптронов, имеют высокое быстродействие и малый коэффициент передачи тока (единицы процентов). Расположение их передающих характеристик на координатной плоскости, которыми определяют коэффициент передачи тока, существенно зависит от температуры (рис. 8). Сопротивление изоляции между выходом и входом, которым определяется степень развязки по постоянному току, составляет 10 8 … 10 12 Ом. Качество решения по переменным током зависит от проходной емкости, составляет единицы .

Рис. 8. Температурная зависимость передающих характеристик диодного оптрона с внутренной оптической связью

Рис. 9. Выходная характеристика оптрона в фотовентильном режиме (— точка выделения mах мощности)

Одна из важных особенностей диодных оптронов — способность работать в фотовентильном режиме без подачи внешнего напряжения на фотоприемник (Рис. 9). Оптрон выступает как управляющий изолированный источник питания. Серийные оптроны в фотовентильном режиме имеют, как правило, невысокий КПД (<0,5 … 1%), но достижения на лабораторных образцах КПД 10 … 15% и
возможность батарейного соединения оптронов служат основой для создания специфической группы маломощных (U ≈ 0,5 … 5 В, I ≈ 0,5..50 мА ) вторичных источников питания. Резисторные оптроны характеризуются линейностью и симметричностью исходной вольтамперной характеристики, отсутствием внутренних ЭДС, высокой кратностью отношение . Поэтому, несмотря на свою очень большую инертность и широкое развитие диодных и транзисторных оптронов, резисторные оптроны сохраняют важное самостоятельное значение. Тиристорные оптроны очень удобны в «силовой» оптоэлектронике. Они с одинаковым успехом пригодны для коммутации сильноточных цепей радиотехнического и электротехнического назначения. Управляя настолько большими мощностями в нагрузке, тиристорные оптроны за входом практически совместимы с ИМС (Значение Iвх составляет десятки миллиампер). Кроме рассмотренных разновидностей оптронов, которые распространены в промышленности, определенный интерес представляют и такие, в которых как фотоприемники используют МОН — варикапы, полевые транзисторы с диэлектрической затвором и с управляющим p-n -переходом, однопереходные транзисторы, лавинные диоды и транзисторы, диоды с барьером Шоттки.
Очень перспективными для аналоговой техники является дифференциальные оптроны, в которых один фотоизлучатель работает на два идентичных фотоприемника (Рис. 1, е). К элементарным относятся и многоканальные оптроны, которые представляют собой набор одинаковых оптронов в одном корпусе.

Применение. Оптроны с внутренним оптической связью широко применяются в различных отраслях радиотехники и электроники, вычислительной техники, автоматики, электротехники. В цифровых устройствах их используют для связи устройств, изготовленных на различной основе (например, для сопряжения биполярных ИМС с униполярными, туннельно-диодных и транзисторных схем и т.д.), их используют для управления силовыми цепями двигателей и реле постоянного и переменного токов от низковольтных маломощных логических схем; для связи логических схем с периферийным оборудованием ЭВМ; как элементы развязки от земли в источниках питания; как маломощные реле в электролюминесцентных системах отображения информации; в контрольно-измерительных устройствах,
непосредственно подключаются к сильноточным цепям переменного тока.

Оптроны, которые пригодны для передачи аналоговых сигналов, применяют как коммутирующие элементы в линиях телефонной связи; в кругах связи различных датчиков с ЭВМ; в медицинской электронике.
Оптроны с гибким световодом применяют для контроля высоковольтных линий электропередач; в измерительных системах, предназначенных для работы в условиях сильных помех (СВЧ-помехи, искрение) в устройствах управления и контроля высоковольтных электровакуумных приборов (клистронов, ЭЛТ, ЭОП, тому подобное); в технике физического эксперимента. Оптроны с открытым оптическим каналом (оптоперерывающий и отражающий оптроны) незаменимы в устройствах считывания информации с перфоносителей как индикаторы положения объектов и состояния их поверхностей в качестве датчиков вибрации, заполнения объемов жидкостью и т.д.

Оптронами называют такие оптоэлектронные приборы, в которых имеются источник и приемник излучения (светоизлучатель и фотоприемник) с тем или иным видом оптической и электрической связи между ними, конструктивно связанные друг с другом.

Принцип действия оптронов любого вида основан на следующем. В излучателе энергия электрического сигнала преобразуется в световую, в фотоприемнике, наоборот, световой сигнал вызывает электрический отклик.

Практически распространение получили лишь оптроны, у которых имеется прямая оптическая связь от излучателя к фотоприемнику и, как правило, исключены все виды электрической связи между этими элементами.

По степени сложности структурной схемы среди изделий оптронной техники выделяют две группы приборов. Оптопара (говорят также "элементарный оптрон") представляет собой оптоэлектронный полупроводниковый прибор, состоящий из излучающего и фотоприемного элементов, между которыми имеется оптическая связь, обеспечивающая электрическую изоляцию между входом и выходом. Оптоэлектронная интегральная микросхема представляет собой микросхему, состоящую из одной или нескольких оптопар и электрически соединенных с ними одного или нескольких согласующих или усилительных устройств.

Таким образом, в электронной цепи такой прибор выполняет функцию элемента связи, в котором в то же время осуществлена электрическая (гальваническая) развязка входа и выхода.

В структурной схеме на рис. 1 входное устройство служит для оптимизации рабочего режима излучателя (например, смещения светодиода на линейный участок ватт-амперной характеристики) и преобразования (усиления) внешнего сигнала. Входной блок должен обладать высоким КПД преобразования, высоким быстродействием, широким динамическим диапазоном допустимых входных токов (для линейных систем), малым значением "порогового" входного тока, при котором обеспечивается надежная передача информации по цепи.

Рис 1. Обобщенная структурная схема оптрона

Назначение оптической среды - передача энергии оптического сигнала от излучателя к фотоприемнику, а также во многих случаях обеспечение механической целостности конструкции.

Принципиальная возможность управления оптическими свойствами среды, например, с помощью использования электрооптических или магнитооптических эффектов, отражена введением в схему устройства управления, В этом случае мы получаем оптрон с управляемым оптическим каналом, функционально отличающийся от "обычного" оптрона: изменение выходного сигнала может осуществляться как по входу, так и по цепи управления.

В фотоприемнике происходит "восстановление" информационного сигнала из оптического в электрический; при этом стремятся иметь высокую чувствительность и высокое быстродействие.

Наконец, выходное устройство призвано преобразовать сигнал фотоприемника в стандартную форму, удобную для воздействия на последующие за оптроном каскады. Практически обязательной функцией выходного устройства является усиление сигнала, так как потери после двойного преобразования очень значительны. Нередко функцию усиления выполняет и сам фотоприемник (например, фототранзистор).

Электрические схемы и выходные характеристики оптронов с фоторезистором (а), фотодиодом (б) и фототиристором (в): 1 - полупроводниковый светоизлучающий диод; 2 - фоторезистор; 3 - фотодиод; 4- фототиристор; U и I - напряжение и ток в выходной цепи оптрона. Пунктирные кривые соответствуют отсутствию тока во входной цепи оптрона, сплошные - двум разным значениям входных токов.

Описание, характеристики, Datasheet и методы проверки оптронов на примере PC817.

В продолжение темы «Популярные радиодетали при ремонтах импульсных блоков питания» разберем еще одну деталь- оптопара (оптрон) PC817. Он состоит из светодиода и фототранзистора. Между собой электрически никак не связанны, благодаря чему на основе PC817 можно реализовать гальваническую развязку двух частей схемы — например с высоким напряжением и с низким. Открытие фототранзистора зависит от освещенности светодиодом. Как это происходит более подробно я разберу в следующей статье где в экспериментах подавая сигналы с генератора и анализируя его при помощи осциллографа можно понять более точную картину работы оптопары.

Еще в других статьях я расскажу о нестандартном использовании оптрона первая в роли , а во второй . И используя эти схемные решения соберу очень простой тестер оптопар. Которому не не нужны никакие дорогие и редкие приборы, а всего лишь несколько дешевых радиодеталей.

Деталь не редкая и не дорогая. Но от нее зависит очень многое. Она используется практически в каждом ходовом (я не имею ввиду каком нибудь эксклюзивном) импульсном БЛОКЕ ПИТАНИЯ и выполняет роль обратной связи и чаще всего в связке тоже с очень популярной радиодеталью TL431

Для тех читателей, кому легче информацию воспринимать на слух, советуем посмотреть видео в самом низу страницы.

Оптопара (Оптрон) PC817

Краткие характеристики:

Корпус компактный:

  • шаг выводов – 2,54 мм;
  • между рядами – 7,62 мм.

Производитель PC817 – Sharp, встречаются другие производители электронных компонентов выпускают аналоги- например:

  • Siemens – SFH618
  • Toshiba – TLP521-1
  • NEC – PC2501-1
  • LITEON – LTV817
  • Cosmo – KP1010

Кроме одинарного оптрона PC817 выпускаются и другие варианты:

  • PC827 - сдвоенный;
  • PC837 – строенный;
  • PC847 – счетверенный.

Проверка оптопары

Для быстрой проверки оптопары я провел несколько тестовых экспериментов. Сначала на макетной плате.

Вариант на макетной плате

В результате удалось получить очень простую схему для проверки PC817 и других похожих оптронов.

Первый вариант схемы

Первый вариант я забраковал по той причине что он инвертировал маркировку транзистора с n-p-n на p-n-p

Поэтому чтобы не возникало путаницы я изменил схему на следующую;

Второй вариант схемы

Второй вариант работал правильно но неудобно было распаять стандартную панельку

под микросхему

Панелька SCS- 8

Третий вариант схемы

Самый удачный

Uf — напряжение на светодиоде при котором начинает открываться фототранзистор.

в моем варианте Uf = 1.12 Вольт.

В результате получилась такая очень простая конструкция.

Оптрон - это полупроводниковый прибор, в котором конструктивно объединены источник и приемник излучения, имеющие между собой оптическую связь. В источнике излучения электрические сигналы преобразуются в световые, которые воздействуют на фотоприемник и создают в нем снова электрические сигналы. Оптрон с одним излучателем и приемником называется оптопарой. Микросхема, состоящая из одной или нескольких с дополнительными согласующими и усилительными устройствами, называется оптоэлектронной интегральной микросхемой. На входе и выходе оптрона всегда имеются электрические сигналы, а связь входа с выходом осуществляется световыми сигналами. Цепь излучателя является управляющей, а цепь приемника - управляемой. Конструктивно в оптронах излучатель и приемник излучения помещены в один корпус и связаны оптическим каналом.

Все достоинства и недостатки оптоэлектронных приборов относятся и к оптронам. Самое главное назначение оптронов - передача сигналов с помощью светового потока и гальваническая развязка электрических цепей.

Рассмотрим различные типы оптронов, отличающиеся друг от друга фотоприемниками.

Резистивные оптопары имеют в качестве излучателя светодиод, дающий видимое или инфракрасное излучение. Приемником излучения является фоторезистор, который может работать как на постоянном, так и на переменном токе.

На рис.6.15 схематически изображена резисторная оптопара, у которой выходная цепь питается от источника постоянного или переменного напряжения Е и имеет нагрузку Rн. Напряжение UУПР, подаваемое на светодиод, управляет током в нагрузке. Цепь управления изолирована от фоторезистора, который может быть включен в цепь относительно высокого напряжения.

Рис.6.15. Схема включения резисторной оптопары

В качестве параметров резисторных оптопар обычно указываются максимальные токи и напряжения на входе и выходе, выходное сопротивление при нормальной работы и темновое сопротивление, сопротивление изоляции и максимальное напряжение изоляции между входом и выходом, проходная емкость, время включения и выключения, характеризующее инерционность прибора. Важнейшая характеристика оптопары - входная вольт-амперная и передаточная. Последняя показывает зависимость выходного сопротивления от входного тока.

В качестве примера резисторного оптрона можно привести оптрон VTL5C3 для аудиоприложений производства фирмы Vactec, имеющий характеристики: диапазон изменения сопротивления- 1.5кОм - 10МОм, максимальный ток светодиода - 40мА, напряжение изоляции - 2.5кВ.

Рис.6.16. Резисторный оптрон VTL5C3

Резисторные оптроны применяются для схем автоматического регулирования усиления, связи между каскадами, управления бесконтактными делителями напряжения, модуляции сигналов, формирования различных сигналов и т.д.

Диодные оптопары (рис.6.17, а) имеют обычно кремниевый фотодиод и инфракрасный арсенидо-галлиевый светодиод. Фотодиод может работать в фотогенераторном режиме, создавая фото-ЭДС до 0.8 В, или в фотодиодном режиме. Многоканальные диодные оптопары имеют в одном корпусе несколько оптопар.

Рис.6.17. Различные виды оптопар

Основные параметры диодных оптопар - входные и выходные напряжения и токи для непрерывного и импульсного режима, коэффициент передачи тока, время нарастания и спада выходного сигнала. Свойства диодных оптопар отображаются входными и выходными вольт-амперными характеристиками и передаточными характеристиками для фотогенераторного и фотодиодного режима.

Применение диодных оптопар весьма разнообразно. Например, на основе диодных оптопар создаются импульсные трансформаторы, не имеющие обмоток. Оптопары используются для передачи информации между компьютерами, для управления работой различных микросхем. Разновидностью диодных оптопар являются оптопары, в которых фотоприемником служит фотоварикап (рис.6.17, б).

Транзисторные оптопары (рис.6.17, в) имеют в качестве приемника биполярный кремниевый транзистор типа n-p-n. Основные параметры входной цепи таких оптопар аналогичны параметрам диодных оптопар. Дополнительно указываются максимальные токи, напряжения и мощность, относящиеся к выходной цепи, темновой ток фототранзистора время включения и выключения, параметры, характеризующие изоляцию входной цепи от выходной. Оптопары этого типа работают главным образом в ключевом режиме и применяются в коммутационных схемах, устройствах связи различных датчиков с измерительными блоками, качестве реле и многих других случаях.

Для повышения чувствительности в оптопаре может быть использован составной транзистор (рис.6.17, г) или фотодиод с транзистором (рис.6.17, д). Оптопары с составным транзистором обладают наибольшим коэффициентом передачи тока, но наименьшим быстродействием, а наибольшее быстродействие характерно для диодно-транзисторных оптопар.

В качестве примера можно привести четырехканальный транзиторный оптрон PC847 производства фирмы Sharp (рис.6.18), имеющий характеристики: напряжение изоляции 5000В, коэффициент передачи 50/600%, максимальный входной ток 50мА, максимальное напряжение коллектор - эмиттер 35В, максимальный ток коллектора 50мА, время включения/выключения 4мкс.

Рис.6.18. Счетверенный транзисторный оптрон РС847

Тиристорные оптопары имеют в качестве фотоприемника кремниевый фототиристор (рис.6.17, е) и применяются в ключевых режимах. Основная область использования - схемы для формирования мощных импульсов, управления мощными тиристорами, управления и коммутации различных устройств с мощными нагрузками. Параметры тиристорных оптопар - входные и выходные токи и напряжения, соответствующие включению, рабочему режиму и максимальным допустимым режимам, а также время включения и выключения, параметры изоляции между входной и выходной цепями.

В качестве фотоприемника часто используются симметричные тиристоры - симисторы или триаки. В качестве примера приведен фотосимистор IL 420, выпускаемый фирмой Infineon (рис.6.19), имеющий параметры: напряжение изоляции 4.4кВт, входной ток 60мА, ток удержания тиристора 2мА, максимальное выходное напряжение 600В.

Рис.6.19. Фотосимистор IL 420

Оптоэлектронные интегральные микросхемы (ОЭ ИМС) имеют оптическую связь между отдельными узлами и компонентами. В этих микросхемах, изготовленных на основе диодных, транзисторных или тиристорных оптопар, кроме излучателей и фотоприемников, содержатся еще и устройства для обработки сигналов, полученных от фотоприемника.

Различные ОЭ ЭМС используются главным образом в качестве переключателей логических и аналоговых сигналов, реле и схем индикации.

В качестве примера приведем оптоэлектронную интегральную микросхему HSPL2400 фирмы AgilentTechnologies, включающую в себя фотодиодную оптопару, компаратор и формирователь уровня напряжения для логических микросхем ТТЛ.

Рис.6.20. Оптоэлектронная интегральная микросхема HSPL2400



error: Контент защищен !!